2010-04-18 8 views
29

अज्ञात निरंतर अविवाहित वितरण से खींची गई वास्तविक संख्याओं का एक सेट देखते हुए (मान लीजिए बीटा, कौची, ची-स्क्वायर, घातीय, एफ में से एक है , गामा, लाप्लास, लॉग-सामान्य, सामान्य, परेटो, विद्यार्थी t-, वर्दी और वेइबुल) ..निरंतर यूनिवर्सेट वितरण से तैयार यादृच्छिक संख्याओं के एक सेट को देखते हुए, वितरण

x <- c(7.7495976,12.1007857,5.8663491,9.9137894,11.3822335,7.4406175,8.6997212,9.4456074,11.8370711,6.4251469,9.3597039,8.7625700,10.3171063,8.0983110,11.7564283,11.7583461,7.3760516,14.5713098,14.3289690,12.8436795,7.1834376,12.2530520,8.9362235,11.8964391,5.4378782,7.8083060,0.1356370,14.9341847,6.8625143,9.0285873,10.2251998,10.3348486,7.7518365,2.8757024,9.2676577,10.6879259,11.7623207,14.0745924,9.3478318,7.6788852,9.7491924,14.9409955,11.0297640,8.5541261,8.6129808,9.2192320,12.3507414,8.9156903,11.6892831,10.2571897,11.1673235,10.5883741,8.2396129,7.3505839,3.4437525,8.3660082,10.5779227,8.5382177,13.6647484,9.0712034,4.1090454,13.4238382,16.1965937,14.2539891,14.6498816,6.9662381,12.3282141,10.9628268,10.8859495,11.6742822,12.0469869,9.1764119,4.2324549,12.6665295,10.7467579,6.4153703,10.3090806,12.0267082,9.2375369,13.8011813,13.0457227,14.0147179,6.9224316,7.1164269,10.7577799,8.0965571,13.3371566,14.6997535,8.8248384,8.0634834,10.2226001,8.5112199,8.1701147,8.1970784,10.5432878,5.9603389,6.6287037,13.3417943,3.1122822,10.4241008,11.4281520,9.4647825,10.5480176,14.2357819,9.4220778,9.7012755,10.9251006,5.3073151,10.8228672,12.0936384,8.5146227,8.4115865,7.7244591,7.2801474,7.3412563,4.5385940,7.8822841,12.7327836,11.5509252,13.0300876,10.0458138,11.3862972,11.3644867,12.6585391,5.8567192,9.8764841,7.6447620,8.7806429,9.2089114,9.1961781,7.2400724,14.7575303,8.6874476,4.6276043,14.0592724,10.3519708,8.2222625,8.7710501,8.5724602,11.4279232,9.6734741,12.1972490,10.1250074,4.8571327,8.0019245,9.8036286,17.7386541,10.8935339,4.7258581,14.2681556,7.4236474,9.4520797,9.2066764,7.7805317,0.4938756,13.0306624,8.0225287,11.1801478,8.7481126,16.5873192,6.0404763,9.5674318,10.8915023,13.2473727,5.5877557,1.4474869,10.9504070,10.8879749,10.7765684,9.15,11.0798794,10.0961631,9.5913525,14.0855129,7.3918195,16.6303158,9.1436327,11.9848346,11.4691572,16.0934172,13.1431040,8.2455786,10.7388841,13.7107201,9.6223990,7.6363513,9.5731838,7.0150930,14.1341888,7.5834625,13.8362695,12.9790060,10.4156690,6.4108920,6.3731019,6.3302824,8.4924571,11.2175143,11.6346609,6.0958761,12.8728176,10.2689647,9.7923411,11.3962741,7.3723701,8.1169299,9.7926014,8.7266379,10.7350973,12.7639103,7.4425159,15.9422109,9.9073852,6.2421614,5.2925668,9.9822059,13.9768971,9.3481404,6.8102106,12.6482884,9.8595946,12.8946675,6.3519119,9.2698768,4.9538608,13.8062408,14.7438135,8.5583994,12.4232260,9.4205371,13.6507205,11.7807767,10.9747222,15.9299602,10.0202244,11.9209419,12.8159324,7.0107459,7.8076222,8.0086965,14.7694984,6.4810687,6.6833260,3.9660939,16.2414479,9.3474497,10.2626126,11.7672786,10.1245905,2.3416774,9.2548226,12.3498943,9.1731074,8.6703280,3.8079927,12.0858349,11.1027140,11.9034505,11.1981903,9.5554276,11.5333311,4.1374535,7.9397446,10.6732513,5.4928081,5.9026714,7.1902350,7.3516027,9.5251792,12.8827838,8.6051567,9.9074448,4.7244414,9.4681156,17.4316786,15.0770196,7.4215510,7.2839984,8.2040354,11.2938556,12.2308244,17.2933409,5.7154747,9.9383524,7.9912142,10.2087560,13.0489301,10.2092634,11.4029668,10.3103281,10.2810316,8.9487624,14.2699307,12.8538251,10.7545354,18.0638133,7.2115769,7.4020585,7.9737234,13.1687588,13.7186238,9.6881618,4.2991770,11.4829896,8.0113006,10.0285544,8.3325591,8.8476239,9.3618137,11.0913308,10.2702207,12.0215701,11.8083744,8.1575837,10.0413629,11.7291752,13.8315537,12.4823312,13.3289096,8.5874403,9.8624401,7.0444818,13.9701389,10.0250634,14.3841966,17.4074390,13.1290358,8.3764673,7.8796107,6.4597773,12.4989708,11.3617236,5.0730931,13.5990536,9.4800716,11.1247161,12.6283343,12.5711367,10.8075848,13.2183856,12.4566869,17.0046899,9.9132293,13.8912393,10.4806343,6.7550983,18.4982020,4.6835563,4.6068688,8.4304188,7.8747286,9.4440702,12.1033704,10.7397568,12.4483258,12.0952273,9.4609549,16.1755646,13.2110564,12.5244792,14.5511670,14.9365263,6.6852081,14.6988321,9.8833093,11.1549852,14.4090081,6.2565184,8.3488705,10.8509966,7.6795679,13.5814813,10.1733942,12.1773482,4.7032686,9.9248308,17.7067155,8.2378404,12.8208154,12.7675305,9.0907063,9.5720411,4.5536981,5.2252539,10.7393508,8.1761239,7.8011878,10.8517959,12.8793471,10.1738281,9.0522516,9.7020267,8.5743543,7.1063673,9.4366173,7.5154902,9.2420952,13.7275687,8.2097051,12.4686117,8.6426135,10.6854081,14.8617929,14.2631291,11.1449327,8.4807248,5.9399190,6.7772300,7.2566033,10.3215210,9.2483564,10.8592844,13.8227188,5.8955118,6.8936159,11.4641992,8.6535466,14.1301887,10.2194653,9.3929177,11.8592296,9.3153675,10.8574024,9.5293558,14.1394531,7.1224090,5.6785198,13.1351723,7.1031658,7.6344684,8.6918016,6.8426780,8.6902514,9.9025967,6.1603559,6.3995948,6.7157089,14.9359341,13.1275476,11.2493476,10.7684760,8.5263731,5.1711855,10.2432689,6.7908688,9.2634794,5.6242460,7.7319788,13.7579540,10.5344149,11.2123002,9.5503450,11.3042249,6.6581916,13.0363709,9.0141363,6.8815546,8.6309000,9.4825677,6.9816465,9.4836443,8.5629547,12.5643187,13.2918150,4.9542483,3.8941388,12.0723769,14.6818075,6.2067566,8.6538934,11.4860264,9.6481396,12.7096758,7.8361298,12.0167492,9.2011051,6.7472607,13.5725275,15.0862343,12.5248807,10.8804527,12.7291198,7.7527975,7.8537703,10.5257599,11.2615216,5.2586963,9.3935784,4.8959811,14.9649019,9.7550081,9.0961317,3.0822901,10.4690830,11.4116176,11.8268286,9.6303294,12.6595176,10.3003485,10.6738841,7.1545388,13.1700952,8.8394611,11.7666496,5.3739818,12.5156287,10.5998309,7.9280247,11.3985509,9.3435626,9.1445783,7.5190392,10.5207065,5.5194295,14.4021779,7.9815022,7.3148241,5.0131517,12.1867856,3.4892615,14.7278153,10.0177503,9.0080577,6.2549383,11.5792232,10.0743671,4.6603495,9.1943305,10.0549778,13.3946923,11.0435648,11.9903902,7.5212459,6.9752799,9.7793759,3.0074422,9.9630136,8.2949444,14.4448033,8.8767257,10.4919437,12.8309614,11.9987884,9.4450733,7.1909711,7.7836130,12.0111407,7.8110426,8.8857522,7.2070115,6.1091037,15.5397454,12.4138856,11.0948175,10.3384724,4.0731303,11.9523302,11.7543732,8.6845056,11.3963952,9.1248950,9.8663549,14.4536098,10.5610537,9.6523570,9.9533877,10.1019772,12.0909679,12.1466894,9.8986813,14.2406526,10.1251599,13.5607593,8.3409267,7.3538062,9.2187909,8.3878572,9.6934979,6.8270478,6.9754722,14.7438670,6.2118150,4.3408116,11.4874280,12.9580969,9.5487183,10.2743684,11.2433385,14.4445854,10.3395096,5.7534609,10.5550234,10.9322053,10.2105928,11.3020951,12.9484069,6.5904212,8.4368601,11.3280691,8.6031823,7.6938566,11.3733151,12.3900593,11.7711757,11.2307516,13.4915701,10.7228153,7.3886924,8.4401787,10.2753493,8.4389663,12.1972728,10.4918743,10.6289742,10.5594228,6.7236908,11.2358099,8.5938861,12.3906280,14.4511787,7.4746119,15.8803774,2.5522927,9.6801286,8.5697501,10.8271935,13.5280438,10.6818935,13.5646711,3.5187030,10.4440143,9.8327296,9.7382627,14.1669606,6.9083257,3.8266181,13.6244062,11.0284378,9.5523319,8.9891586,9.9055215,8.3856238,8.7478998,6.6987620,14.7248918,9.2529918,10.2082195,4.9534370,9.2030317,5.2269606,8.0661516,13.1779369,5.2971835,15.0037013,7.2702621,6.9997505,9.6490126,13.9149660,10.7425870,9.7558964,12.5752855,10.5098261,20.2689637,9.8681830,7.8259004,9.4911900,9.6024895,7.6085691,12.0086596,6.6780724,8.2764670,8.9880572,15.9231426,5.9905542,13.5816388,8.9839322,9.5235545,10.1314783,13.1174616,8.1648447,12.5653484,12.4941364,10.5916275,12.7761500,9.8608664,8.1374522,10.6055768,6.5465219,11.7945966,7.0397647,4.4046833,12.4284773,0.4180241,12.0268339,10.0441325,5.3276329,8.4208769,8.5484829,9.8222639,9.4951750,9.3263556,13.7433301,10.1112279,12.3558939,10.8694158,9.7864777,5.5161601,7.0906274,14.5786803,12.9236138,8.9206195,7.0104273,5.8283839,7.6944516,6.2924265,10.0766522,10.3576597,8.5793193,11.2022858,4.9360148,6.5907700,13.0853471,9.5498965,10.8132248,7.3545704,9.3583861,10.5726301,6.8032692,9.5914570,6.1383186,7.0176580,16.8026498,6.7959168,9.2745414,7.7390857,12.5977623,8.6116698,13.6735060,10.8476068,9.6710713,10.1086791,9.6101003,11.2849373,14.3841286,10.0175111,5.9766042,9.2654916,12.3336237,11.0695365,9.4801954,6.6405542,11.7110714,9.2962742,4.5557592,7.9725970,10.3105591,9.1068024,8.1585631,14.9021906,9.2015137,15.0472571,9.1225965,13.9551835,15.1033478,10.6360240,12.0867865,15.6969704,9.5818060,8.1641150,8.2950194,8.6544478,7.9130456,8.8904450,13.9381998,8.9913977,14.0155779,6.2856039,10.7923301,8.8070441,11.2657258,10.7901363,9.1724396,6.6433443,9.5172255,12.3402514,2.7254577,12.4006210,13.2697124,10.0670987,15.3858112,8.2044828,10.7534955,7.9282064,10.9170642,12.8222748,18.2680638,9.0601854,13.2616197,7.0193571,12.2447467,5.3729936,14.8064727,10.5359554,10.4851627,11.8312380,13.3435483,10.5894537,5.0047413,7.5532502,11.9171854,12.1777692,7.6730359,5.5515027,12.3027227,10.1575062,14.8505769,9.6526219,11.2016182,10.7898901,13.6303578,12.8561220,13.3002161,9.0945849,4.9117132,8.0514791,8.3684288,4.7461608,6.3118847,14.3888758,15.8801467,11.6563489,7.9043481,6.1992280,10.4055679,6.4948166,11.8656277,3.8399970,9.5901581,8.6379262,7.4541442,7.1135626,7.9164363,9.6439593,15.6259631,7.3244170,8.4635798,12.0317526,17.1847365,12.5357554,6.0369018,12.9830581,11.2712555,12.3488084,9.3935706,8.1248854,11.4523131,9.6710694,9.5978474,15.1563587,7.5582530,10.8587757,13.5890062,10.1390991,8.1443215,16.1032757,6.5988579,9.6915113,7.6946942,10.5688193,7.9222074,6.0964578,7.0383112,11.5956154,6.6059072,13.5679685,15.1021379,10.2625096,10.2202339,15.7814051,16.3342713,6.1339245,0.9275113,15.8169582,11.0888355,7.8822788,15.2039942,9.6944328,11.7292036,11.6230714,8.4657438,7.6462181,7.1888162,8.1788400,13.7221572,12.4793501,10.4488461,8.9233659,8.9305724,7.4913262,12.5882791,10.6825315,10.8527571,12.1660301,12.4390247,13.8529219,8.5372836,11.2575812,6.4922496,9.5404721,10.7082122,11.2365487,10.2713802,14.8685632,10.7735798,10.6526134,4.8455022,8.3135583,10.8120056,7.2903999,7.0497880,4.9958942,5.9730174,9.8642732,11.5609671,10.1178216,6.6279774,9.2441754,9.9419299,13.4710469,6.0601435,8.2095239,7.9456672,12.7039825,7.4197810,9.5928275,8.2267352,2.8314614,11.5653497,6.0828073,11.3926117,10.5403929,14.9751607,11.7647580,8.2867261,10.0291522,7.7132033,6.3337642,14.6066222,11.3436587,11.2717791,10.8818323,8.0320657,6.7354041,9.1871676,13.4381778,7.4353197,8.9210043,10.2010750,11.9442048,11.0081195,4.3369520,13.2562675,15.9945674,8.7528248,14.4948086,14.3577443,6.7438382,9.1434984,15.4599419,13.1424011,7.0481925,7.4823108,10.5743730,6.4166006,11.8225244,8.9388744,10.3698150,10.3965596,13.5226492,16.0069239,6.1139247,11.0838351,9.1659242,7.9896031,10.7282936,14.2666492,13.6478802,10.6248561,15.3834373,11.5096033,14.5806570,10.7648690,5.3407430,7.7535042,7.1942866,9.8867927,12.7413156,10.8127809,8.1726772,8.3965665) 

.. वहाँ प्रोग्राम के रूप में और स्वचालित रूप से आर में कुछ आसान तरीका है सबसे अधिक संभावना वितरण खोजने के लिए और अनुमानित वितरण पैरामीटर?

कृपया ध्यान दें कि वितरण पहचान कोड स्वचालित प्रक्रिया का हिस्सा होगा, इसलिए पहचान में मैन्युअल हस्तक्षेप संभव नहीं होगा।

उत्तर

15

मेरा पहला दृष्टिकोण संभव वितरण के विरुद्ध दिए गए डेटा के qq प्लॉट उत्पन्न करना होगा।

x <- c(15.771062,14.741310,9.081269,11.276436,11.534672,17.980860,13.550017,13.853336,11.262280,11.049087,14.752701,4.481159,11.680758,11.451909,10.001488,11.106817,7.999088,10.591574,8.141551,12.401899,11.215275,13.358770,8.388508,11.875838,3.137448,8.675275,17.381322,12.362328,10.987731,7.600881,14.360674,5.443649,16.024247,11.247233,9.549301,9.709091,13.642511,10.892652,11.760685,11.717966,11.373979,10.543105,10.230631,9.918293,10.565087,8.891209,10.021141,9.152660,10.384917,8.739189,5.554605,8.575793,12.016232,10.862214,4.938752,14.046626,5.279255,11.907347,8.621476,7.933702,10.799049,8.567466,9.914821,7.483575,11.098477,8.033768,10.954300,8.031797,14.288100,9.813787,5.883826,7.829455,9.462013,9.176897,10.153627,4.922607,6.818439,9.480758,8.166601,12.017158,13.279630,14.464876,13.319124,12.331335,3.194438,9.866487,11.337083,8.958164,8.241395,4.289313,5.508243,4.737891,7.577698,9.626720,16.558392,10.309173,11.740863,8.761573,7.099866,10.032640) 
> qqnorm(x) 

अधिक जानकारी के लिए देख link

एक और संभावना मास पैकेज में fitdistr समारोह पर आधारित है। यहां विभिन्न वितरण उनके लॉग-संभावना

> library(MASS) 
> fitdistr(x, 't')$loglik 
[1] -252.2659 
Warning message: 
In log(s) : NaNs produced 
> fitdistr(x, 'normal')$loglik 
[1] -252.2968 
> fitdistr(x, 'logistic')$loglik 
[1] -252.2996 
> fitdistr(x, 'weibull')$loglik 
[1] -252.3507 
> fitdistr(x, 'gamma')$loglik 
[1] -255.9099 
> fitdistr(x, 'lognormal')$loglik 
[1] -260.6328 
> fitdistr(x, 'exponential')$loglik 
[1] -331.8191 
Warning messages: 
1: In dgamma(x, shape, scale, log) : NaNs produced 
2: In dgamma(x, shape, scale, log) : NaNs produced 
+0

के साथ अनुमानित पैरामीटर देख सकते हैं आपने मुझे बस इसे हराया! यही वही है जो मैं करूंगा। न्यूनतम लॉगलिक खोजने के लिए एक लूप। सावधान रहें! ओपी ने मूल्यों को बदल दिया है ताकि आपके परिणाम अब सही न हों। एक और सॉफ्टवेयर का उपयोग करके मुझे वास्तव में पता चला कि सर्वोत्तम फिट पैरामीटर mu = 9.976 और lambda = 42.411 पैरामीटर के साथ एक व्यस्त सामान्य वितरण द्वारा दिया जाता है। क्या फिटडिस्टर इस तरह के वितरण को स्वीकार करता है? –

+0

gd047: अवलोकनों की संख्या 100 से 1000 तक बढ़ी थी, लेकिन अंतर्निहित वितरण अभी भी वही है। – knorv

+9

आंकड़े के बिंदु से यह कोड गलत है। कई मानकों के साथ सामान्य वितरण में बेहतर लॉग-संभावितता स्कोर करते हैं तो कुछ पैरामीटर के साथ वितरण।लेकिन इस तथ्य का मतलब यह नहीं है कि कई पैरामीटर वितरण परिकल्पना को कुछ पैरामीटर वितरण के खिलाफ बेहतर परिकल्पना के रूप में स्वीकार किया जाना चाहिए। loglik केवल तभी तुलना की जा सकती है जब अनुमानित पैरामीटर की संख्या संख्या में समान होती है। – emanuele

15

द्वारा आदेश दिया है एक और समान दृष्टिकोण हित के वितरण के माध्यम से fitdistrplus पैकेज

library(fitdistrplus) 

लूप का उपयोग कर और 'fitdist' वस्तुओं उत्पन्न कर रहा है। फिटिंग विधि के रूप में maximum likelihood estimation या matching moment estimation के लिए "mle" या तो "mle" का उपयोग करें। आदेश चयनित मॉडल

b_best<-bootdist(f_best) 
print(f_best) 
plot(f_best) 
summary(f_best) 

fitdist विधि अन्य पैकेजों से कस्टम वितरण या वितरण उपयोग करने के लिए अनुमति देता है के मापदंडों में अनिश्चितता अनुकरण में

f1<-fitdist(x,"norm",method="mle") 

उपयोग बूटस्ट्रैप फिर से नमूने, कि इसी घनत्व प्रदान की फ़ंक्शन dname, संबंधित वितरण फ़ंक्शन pname और इसी मात्रात्मक फ़ंक्शन qname को परिभाषित किया गया है (या यहां तक ​​कि केवल घनत्व फ़ंक्शन)।

तो अगर आप उलटा सामान्य वितरण के लिए लॉग-संभावना का परीक्षण करना चाहता था:

library(ig) 
fitdist(x,"igt",method="mle",start=list(mu=mean(x),lambda=1))$loglik 

तुम भी Fitting distributions with R उपयोगी मिल सकता है।

3

आप कोल्मोगोरोव-स्मरनोव परीक्षण (ks.test में आर) का उपयोग करने का प्रयास कर सकते हैं।

यदि आपके पास टाइम-टू-इवेंट डेटा है, तो यहां सबसे अच्छा फिट रिपोर्ट करने के लिए सामान्य वितरण की सूची के विरुद्ध Bayesian chi squared test ऐसा सॉफ़्टवेयर है।

+0

+1। – knorv

8

मुझे एक यथार्थवादी स्थिति की कल्पना करना मुश्किल लगता है जहां यह उपयोगी होगा। कर्नेल घनत्व अनुमान जैसे गैर-पैरामीट्रिक उपकरण का उपयोग क्यों न करें?

+3

मेरे पास हाल ही में वर्षों तक एक ही दृश्य था। आखिर में इसके लिए एक जवाब है: उन मामलों में जहां मूल डेटा साझा करना संभव नहीं है, तो सिंथेटिक डेटा उत्पन्न करने का एक बहुत ही सरल तरीका है जो मूल डेटा की तरह दिखता है। उदाहरण के लिए, मैं एक एल्गोरिदम अनुकूलित करना चाहता हूं जो कैशिंग से प्रभावित हो सकता है और मैं विभिन्न परिदृश्यों के तहत सिंथेटिक डेटा की भारी मात्रा में परीक्षण करना चाहता हूं, साथ ही व्यवहार को विश्लेषणात्मक रूप से समझना चाहता हूं। सिंथेटिक डेटा का उपयोग करने के लिए यह गंदा लगता है, लेकिन मुझे कुछ उपयोगिता दिखाई देती है। – Iterator

9

(अतिरिक्त स्पष्टीकरण जोड़ने के लिए संपादित उत्तर)

  1. आप वास्तव में लगता है नहीं कर सकते "" वितरण; वास्तविक वितरण जिस डेटा से खींचा जाता है, लगभग हमेशा * इस तरह के किसी भी सॉफ्टवेयर द्वारा प्रदान की जाने वाली किसी भी "कपड़े धोने की सूची" में होने की गारंटी नहीं दी जा सकती है। सबसे अच्छा आप "ए" वितरण (अधिक संभावनाएं) पा सकते हैं, एक पर्याप्त विवरण है। भले ही आपको एक अच्छा फिट मिल जाए, वहां हमेशा वितरण की अनंतता होती है जो मनमाने ढंग से बंद होती है। वास्तविक डेटा वितरण के विषम मिश्रणों से खींचा जाता है जो स्वयं के पास सरल कार्यात्मक रूप से आवश्यक नहीं होते हैं।

    * एक उदाहरण जहां आप उम्मीद कर सकते हैं कि आप कहां जानते हैं कि डेटा वास्तव में एक सूची में बिल्कुल एक वितरण से उत्पन्न हुआ था, लेकिन ऐसी स्थितियां बेहद दुर्लभ हैं।

  2. मुझे नहीं लगता कि संभावनाओं की तुलना करना जरूरी है कि कुछ समझ में दूसरों के मुकाबले अधिक पैरामीटर हों। एआईसी अधिक समझ में आ सकता है, इसके अलावा ...

  3. उम्मीदवारों की सूची से "सर्वश्रेष्ठ फिटिंग" वितरण की पहचान करने का प्रयास करने से अधिक उपयुक्त उत्पादन होता है, और जब तक कि इस तरह के मॉडल चयन का प्रभाव ठीक से नहीं होगा अतिसंवेदनशीलता (एक मॉडल जो बहुत अच्छा लग रहा है लेकिन वास्तव में डेटा को आपके नमूने में नहीं फिट करता है)। आर में ऐसी संभावनाएं हैं (पैकेज fitdistrplus दिमाग में आता है), लेकिन एक सामान्य अभ्यास के रूप में मैं इस विचार के खिलाफ सलाह दूंगा। यदि आपको ऐसा करना है, तो बेहतर सामान्यीकरण त्रुटि वाले मॉडल प्राप्त करने के लिए होल्डआउट नमूने या क्रॉस-सत्यापन का उपयोग करें।

+2

क्या आप सुझाव दे रहे हैं कि अतिरिक्त पैरामीटर डेटा को "अधिक फिट" करने की अनुमति दे सकते हैं, और इस प्रकार एक अवांछित कम loglik प्राप्त कर सकते हैं? – unutbu

+0

@unutbu जरूरी नहीं कि अधिक फिट हो; लेकिन अधिक पैरामीटर का मतलब डेटा फिट करने के लिए स्वतंत्रता की अधिक डिग्री है। –

+0

ओवरफिटिंग ठीक है क्या होता है, हां। आपको यहां वास्तविक मॉडल चयन की आवश्यकता है, जो मॉडलों को अधिक संख्या में पैरामीटर के साथ दंडित करता है। –

0

जैसा कि अन्य ने बताया है, यह मॉडल चयन प्रश्न के रूप में तैयार किया जा सकता है। यह वितरण का उपयोग करने का एक गलत तरीका है जो वितरण की जटिलता को ध्यान में रखे बिना डेटा को सर्वोत्तम रूप से फिट करता है। ऐसा इसलिए है क्योंकि अधिक जटिल वितरण आमतौर पर बेहतर फिट होगा, लेकिन यह डेटा को अधिक से अधिक प्रभावित करेगा।

आप वितरण की जटिलता को ध्यान में रखते हुए अक्काइक सूचना मानदंड (एआईसी) का उपयोग कर सकते हैं। यह अभी भी असंतोषजनक है क्योंकि आप केवल सीमित संख्या में वितरण पर विचार कर रहे हैं, लेकिन लॉग संभावना की तुलना में अभी भी बेहतर है।

मैं बस कुछ ही वितरण का उपयोग करें, लेकिन आप check the documentation दूसरों है कि प्रासंगिक

का उपयोग fitdistrplus आप चला सकते हैं हो सकता है खोजने के लिए कर सकते हैं:

library(fitdistrplus) 

distributions = c("norm", "lnorm", "exp", 
      "cauchy", "gamma", "logis", 
      "weibull") 


# the x vector is defined as in the question 

# Plot to see which distributions make sense. This should influence 
# your choice of candidate distributions 
descdist(x, discrete = FALSE, boot = 500) 

distr_aic = list() 
distr_fit = list() 
for (distribution in distributions) { 
    distr_fit[[distribution]] = fitdist(x, distribution) 
    distr_aic[[distribution]] = distr_fit[[distribution]]$aic 
} 

> distr_aic 
$norm 
[1] 5032.269 

$lnorm 
[1] 5421.815 

$exp 
[1] 6602.334 

$cauchy 
[1] 5382.643 

$gamma 
[1] 5184.17 

$logis 
[1] 5047.796 

$weibull 
[1] 5058.336 

हमारे साजिश और AIC के अनुसार, यह बनाता है एक सामान्य उपयोग करने के लिए भावना। आप न्यूनतम एआईसी के साथ वितरण चुनकर इसे स्वचालित कर सकते हैं। आप अनुमानित पैरामीटर

> distr_fit[['norm']] 
Fitting of the distribution ' norm ' by maximum likelihood 
Parameters: 
    estimate Std. Error 
mean 9.975849 0.09454476 
sd 2.989768 0.06685321 
संबंधित मुद्दे